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ABSTRACT

We discuss adaptive FIR filters operating in the continuous
time domain. These filters become attractive to implement
at microwave frequencies. The traveling wave FIR filter
topology is compared with a conventional tapped delay line,
and its advantages when used as an adaptive equalizer are
pointed out.

1. INTRODUCTION

Rapid scaling of bandwidth in optical networks have re-
sulted in deployment of Optical Time Division Multiplexed
Systems (OTDM) with bit rates as high as 10 and 40 Gbps.
At these data rates, there are significant link penalties asso-
ciated with optical fiber impairments like chromatic disper-
sion and polarization mode dispersion (PMD). While tech-
niques do exist to correct for these impairments, they work
in the optical domain. Electronic solutions to the problem
are attractive due to their potential low cost. Since fiber
impairments vary with environmental conditions, these so-
lutions will necessarily have to be adaptive. It is in this con-
text that adaptive electronic equalizers are used. By now,
equalization as a technique is very well known and equaliz-
ers of high complexity are routinely used in most channels,
ranging from telephony to hard disk drives. While the op-
tical channel is more “benign” when compared to some of
the channels referred to above, the main challenge lies in
being able to implement these well known DSP techniques
at speeds of several tens of gigabits per second [1].

The block diagram of a typical fiber optic receiver em-
ploying an adaptive equalizer is shown in Figure 1, where
the equalizer and the clock and data recovery (CDR) unit
are shown together. Figure 2(a) shows an all digital imple-
mentation of the equalizer/CDR, which is very popular in
low speed channels. The signal is sampled and quantized
by an analog-to-digital converter (ADC) before equaliza-
tion. Often, the signal is sampled at twice the symbol rate,
so as to implement a matched filter-symbol spaced equal-
izer combination. The resolution required of the ADC is
governed by the SNR required at the decision device and
the coefficients of the FIR filter (which in turn depend on
the channel response). Convergence of the equalizer taps
is coupled with the dynamics of the timing recovery loop.

This architecture poses many problems at bit rates of sev-
eral Gbps. Implementing a high speed ADC is far from
trivial, and might require excessive parallelism. In order
to prevent timing mismatch between several parallel paths,
a front end sample-and-hold operating at the symbol rate
is required. A fractionally spaced implementation is only
likely to worsen the above problems. The digital FIR fil-
ter would also involve massive parallelism and pipelining,
making the whole receiver a very power hungry one. In its
defense, however, improvements in IC fabrication technol-
ogy will tend to make this increasingly feasible, and this
architecture might be the one of choice in the future.

Figure 2(b) shows an all analog approach to the equal-
ization problem. Here, a physical delay element, such as
a transmission line is used to produce delayed replicas of
the input. While such an approach would lead to physi-
cally very large equalizers at low frequencies, it becomes
attractive at very high speeds. Since the delay elements are
passive, they dissipate no power. This opens up the possi-
bility of implementing very low power equalizers operating
at several gigabits per second. Moreover, the delay T d can
be made T/2 without any problem. These types of filters,
referred to as continuous-time FIR filters are analyzed in
this paper. In Section 2, we consider a conventional tapped
delay line structure, as inspired from DSP. The effects of
impedance mismatch at the ends of the transmission line,
and uniformly distributed series loss are analyzed. The trav-
eling wave FIR filter topology, and its advantages relative to
a conventional tapped delay line structure are discussed in
Section 3. Tap weight adaptation issues discussed in Sec-
tion 4. Simulation results are presented in Section 5 and
conclusions are given in Section 6.

2. TOPOLOGICAL CONSIDERATIONS

We draw our inspiration from discrete time FIR filters to
arrive at the analog FIR filter topology shown in Figure 3,
which, for illustrative purposes has three taps. The delays
are implemented using transmission lines with a character-
istic impedance of Zo and length T seconds. A transconduc-
tor of value G is used to convert the input voltage to a cur-
rent, which drives the delay line. Taps are implemented by
transconductors with values w1,w2 & w3 as shown. Sum-
mation of the tapped signals is done in the current domain,
and the output voltage is developed across a load resistor of



value 0.5RT (this particular value is chosen in order to fa-
cilitate comparison with another topology, and will become
clear shortly.) The impulse response (Figure 3) of the filter
can be expressed as

h(t) = (RT /2)(w1 hv1(t)+w2 hv2(t)+w3 hv3(t)) (1)

where hv1(t),hv2(t) & hv3(t) are the impulse responses at
nodes v1, v2 and v3 respectively. If RT = Zo,

h(t) = G
[Zo

2

]2
(w1 δ(t)+w2 δ(t −T )+w3 δ(t −2T )) (2)

In practice, impedance mismatch at the ends of the delay
line will cause reflections. We denote the reflection co-
efficient by ΓT , which is approximately (RT − Zo)/(2Zo).
hv1(t), hv2(t) and hv3(t) are modified due to reflections as
shown in Figure 3. For cases of practical interest, ΓT will
be small compared to unity, so terms of the order of Γ2

T and
higher can be safely neglected. The impulse response of the
filter is

h(t) ≈ G(
Zo

2
)2(1+3ΓT )(w1δ(t)+w2δ(t −T )+

w3δ(t −2T )+w2ΓT δ(t −3T )+

w1ΓT δ(t −4T )) (3)

2.1. Series Losses

We now consider the effects of transmission line nonide-
alities on the impulse response of the filter. The most im-
portant among these nonidealities is uniformly distributed
series (resistive) loss. In order to build intuition, we model
each transmission line with a delay T and a total series loss
of Rs by dividing it into N sections. The three tap FIR shown
in Figure 3 would now consist of 2N transmission line sec-
tions, each of characteristic impedance Zo, delay T/N and
lumped series resistance Rs/N. We consider the case when
ΓT = 0, and the practical situation where Rs/Zo << 1. If a
wave of unit magnitude is launched at node v1 in the direc-
tion shown in Figure 4, we see that a small reflection occurs
at the end of the first section after a time T/N. The magni-
tude of this reflected wave is approximately

ΓR =
Rs/N

2Zo +Rs/N
≈

Rs

2NZo
(4)

This reflection reaches node v1 after a delay T/N, so the
total time elapsed since the launching of the initial wave
is 2T/N. The transmitted wave, on the other hand, has a
magnitude of (1−Γs) ≈ 1, and again undergoes a small re-
flection at the end of the second section. This reflected wave
gets back to node v1 after a delay of 4T/N, and with a mag-
nitude of Γs(1−Γs)

2 ≈ Γs. The magnitudes of reflections
from consequent sections can also be computed in a simi-
lar manner. Figure 4(a) shows the bounce diagrams for the
case considered above. Note the timescale in this plot. In
the limit of infinite N, hv1(t) can be shown to have an ex-
ponentially decaying tail, as shown in Figure 4(b). For the
case where there is series loss as well as mismatch at the

terminations, hv1(t) would look like that shown in Figure
4(c). Impulse responses hv2(t) and hv3(t) can be obtained
in a similar manner. Like hv1(t), they would have exponen-
tially decaying tails associated with uniform series loss, and
impulses due to reflections at the ends of the line. Note that
the amplitude of these tails is proportional to Rs

Zo
, which, in

practice should be made small (of the order of 0.05).
The key points to note from the discussion in this section

are as follows :

1. Reflections at the ends of the delay line cause the fil-
ter impulse response to “spill” over its ideal span. If
the reflection coefficient is small, then the span of the
impulse response with impedance mismatch is about
twice the span of the ideal impulse response.

2. Uniform series loss results in exponentially decaying
tails appearing in the node impulse responses. If the
reflection coefficient associated with the terminating
resistors RT is small, then these tails are also con-
tained within twice the span of the ideal impulse re-
sponse.

3. It is not possible to constrain the impulse response
of the filter to within the span of the ideal filter, by
manipulating the tap weights w1, w2 and w3. This is
clear from equation (3).

4. From observation (3) above, it is clear that if the filter
is used in the context of adaptive equalization to com-
pensate for channel inter symbol interference (ISI),
this topology is more likely to worsen the problem
than mitigate it.

3. TRAVELING WAVE FIR FILTERS

Consider the filter structure shown in Figure 5. Topologi-
cally, it is equivalent to a traveling wave amplifier, but with
the output being taken at the “anti-sync” end [2] [3] [4].
While the possibility of using this structure as an FIR filter
has been pointed out in the literature, its robustness, espe-
cially in the context of adaptive equalization, does not seem
to have been adequately appreciated.

The filter has two sections of cascaded transmission lines,
one on the input side and one on the output side. The im-
pulse response of the filter is written as

h(t) = w1 hw1(t)+w2 hw2(t)+w3 hw3(t) (5)

hw1(t) is the impulse response of the filter with w1 = 1 and
w2, w3 = 0. hw2(t) and hw3(t) are similarly defined. These
responses are shown in Figure 5, where hv1(t), hv2(t) and
hv3(t) are shown on the left. In these plots, all terms of the
order of Γ2

T and higher have been neglected. It is easily seen
that hw1(t) = hv1(t) ∗ hv1(t)/G. Since hv1(t) ≈ G( Zo

2 )(1 +
ΓT )(δ(t)+ΓT δ(t −2T )), we have

hw1(t) ≈ G(
Zo

2
)2(1+2ΓT )(δ(t)+2ΓT δ(t −2T )) (6)
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This is plotted on the right side of Figure 5. Similarly, it can
be shown that

hw2(t) ≈ G(
Zo

2
)2(1+2ΓT )(δ(t −T )+

2ΓT δ(t −2T )) (7)

hw3(t) ≈ G(
Zo

2
)2(1+2ΓT )δ(t −2T ) (8)

Using (5), and the results above, we see that

h(t) ≈ G(
Zo

2
)2(1+2ΓT )(w1 δ(t)+w2 δ(t −T )+

(w3 +2ΓT w1 +2ΓT w2)δ(t −2T )) (9)

We see that

1. If the reflection coefficient is small, then the span of
the impulse response with impedance mismatch is the
same as the span of the ideal impulse response.

2. Reflections cause tap weight “contamination”. In the
example discussed above, we see that even if w3 is set
to zero, there is a component of the impulse response
at t = 2T . This can be corrected by using a modified
value for w3, which is seen to be w3′ = w3−2ΓT w1−
2ΓT w2.

3. Given that typical reflection coefficients achievable
without using special trimming techniques are of the
range |ΓT |< 0.05−0.1, corresponding to resistor mis-
match between 10− 20%, it is seen that a traveling
wave FIR structure is at least an order of magnitude
improvement over the conventional structure shown
in Figure 3, as far as residual induced “ISI” terms out-
side the equalizer span are concerned.

3.1. Choice of tap spacing, and effect of high frequency
conductor and dielectric losses

The tap spacing can be made equal to one-half the sym-
bol rate so that the equalizer implements a matched filter-
symbol spaced equalizer cascade. Small variations in tap
spacing around the nominal value are not critical, and unlike
a digital implementation, no particular penalty is incurred
by reducing the tap spacing relative to a symbol interval.
The frequency response of the filter with ideal transmission
lines is periodic with period 1/T , but high frequency con-
ductor and dielectric losses (presumably due to skin effect
and dielectric relaxation) cause attenuation of the “image”
responses. This might actually be to our benefit, as this fil-
ters out high frequency noise prior to the sampling opera-
tion.

4. TAP WEIGHT ADAPTATION

One of the important properties of an FIR filter is that the
derivative of the filter output with respect to a tap weight

(gradient signal) is simply a delayed version of the input.
This enables simple implementation of the FIR tap weight
adaptation loops. Gradient signals are not easily obtained
for a traveling wave FIR filter, as is apparent from equa-
tion 9. Even in the absence of reflections and series loss,
the tap spacing T might change with environmental con-
ditions. Note however, that the filter is still a linear com-
biner, hence the error surface is unimodal. Efficiently adapt-
ing filter coefficients when gradient signals are not avail-
able (or are too cumbersome to compute) is an area of ac-
tive research ([5][6] and references therein). One approach
that has been employed in optical channels is to use bit er-
ror rate (BER) as the objective function, to be minimized
with respect to the tap weights. In many optical receivers
BER is either directly available from forward error correc-
tion (FEC) blocks. Alternatively, it can be estimated using
pseudo-error techniques. Another promising approach [5]
that has been demonstrated at low frequencies is estimation
of the gradient by dithering individual taps and observing
the change in output with respect to each tap.

5. SIMULATION RESULTS

In this section, we present simulation results of a traveling
wave FIR equalizer, operating on a 10 Gbps NRZ bit stream
passing through a channel 0.5δ(t) + 0.5δ(t − 0.8Tb), with
Tb = 100ps. The transmit filter is a 4th order Bessel section
with a half power bandwidth of 7.5GHz. The eye diagram
at the input of the receiver is shown in Figure 6. The 10
tap equalizer is implemented with elements which exhibit
transmission-line like behavior in the frequency range of in-
terest. Tap spacing is 48ps. Rs/Zo is about 0.04, and so is
ΓT . Figure 7 shows the eye diagram at the output of the
equalizer. The frequency response of the equalizer is shown
in Figure 8. Note the boost in the response around 5GHz.

6. CONCLUSION

We discussed the potential of analog FIR filters operating in
the microwave frequency range. In the presence of practi-
cal nonidealities like impedance mismatch and series loss,
it was shown that the traveling wave FIR filter topology is a
big improvement over a conventional tapped delay line fil-
ter. Simulation results for a 10 tap equalizer operating on a
10Gbps NRZ bit stream corrupted by ISI were given.
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